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Series expansion based on the flow equation method is employed to study the zero-temperature properties of
the spin-1/2 J1-J2-J3 antiferromagnet in two dimensions. Starting from the exact limit of decoupled plaquettes
in a particular generalized J1-J2-J3 model, we analyze the evolution of the ground-state energy and the
elementary triplet excitations in powers of all three interplaquette couplings up to fifth order. We find that the
plaquette phase remains stable over a wide range of exchange couplings and connects adiabatically up to the
case of the plain J1-J2-J3 model but not to the J1-J2 model at J3=0. Besides confirming the existence of such
a phase, recently predicted by Mambrini et al. �Phys. Rev. B 74, 144422 �2006��, we estimate its extent by
Dlog-Padé analysis of the critical lines that result from closure of the triplet gap.
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I. INTRODUCTION

The study of quasi-two-dimensional �quasi-2D� materials
with frustrated magnetic exchange interactions is a field of
intense research. This research is driven by the quest for
systems which may exhibit exotic magnetic phases instead of
simple antiferromagnetic/ferromagnetic long-range order
�AFM/FM LRO�.1 Prominent examples of such phases are
spin liquids �SLs�, with no ordering of any type, or valence
bond states �VBSs�. The latter may occur as solids �VBS�
with no breaking of lattice symmetries but potentially other
hidden order, such as, e.g., string ordering. Moreover valence
bond crystals �VBC� are frequent, where lattice symmetries
are directly broken in favor of, e.g., columnar or plaquette
ordering.1–3 Even for simple frustrated systems a quantitative
understanding of the complete phase diagram is still lacking.
The AFM spin-1/2 J1-J2 model on the square lattice is a
paradigmatic case in this respect. This model corresponds to
Fig. 1, for J1=J0�0, J2�0, and J3=0, where J1 �and J0� is
the nearest-neighbor exchange interaction and frustration is
induced by the next-nearest-neighbor exchange interaction
J2. Experimentally, Li2VOXO4 �X=Ge,Si�, which has been
discovered recently, is a promising candidate to realize the
J1-J2 model in the range J2 /J1�5–10.4,5 Two limiting cases
of J1-J2 model are well understood. For J2=0 and J1�0, the
system is the 2D Heisenberg AFM, which exhibits Néel
LRO. In the opposite limit, J1 /J2→0, the system turns into a
set of two decoupled AFMs on the 2D A and B sublattices.
These lock into a collinear state by the order-from-disorder
effect due to the finite J2. In the intermediate regime, 0.4
��J2 /J1�c1

�J2 /J1� �J2 /J1�c2
�0.6, both the Néel and the

collinear states are know to be unstable. Here, different ap-
proaches, including exact diagonalization �ED�,6–8 quantum
Monte Carlo �QMC�,9,10 spin-wave �SW� theory,11 large-N
expansion,12,13 and series expansion �SE�,14–19 have con-
firmed that one or several quantum disordered phases with a
singlet ground state and a gap to magnetic excitations may
be present. The precise nature of the intermediate phase �S�,
however, is still controversial. In the simplest scenario, con-

sidering the existence of a single intermediate phase only, a
plaquette VBC,9 a columnar VBC,12 and a SL �Ref. 10� have
been proposed. Other studies suggest that the intermediate
phase could be composed of two SL-like phases.17

The main purpose of this paper is to put the J1-J2 model
into a broader perspective by considering an extended ver-
sion, i.e., the J1-J2-J3 model, which is depicted in Fig. 1 for
J1=J0 and includes a third nearest-neighbor interaction J3
�for clarity only some of the J3 couplings are shown�. Clas-
sically, the competing interactions J2 /J1 and J3 /J1 lead to
four ordered phases of the J1-J2-J3 model.20–22 Among them,
Néel and helicoidal phases, which are separated by a classi-
cal critical line �J2+2J3� /J1=1 /2 exist. The Néel phase re-
mains rather stable against quantum fluctuations, although it
has been conjectured that critical line, at J2=0, should be
shifted to J3 /J1�1 /4 once the quantum model is
considered.22

FIG. 1. The generalized J1-J2-J3 model considered in this work.
Solid circles represent spin-1/2 moments. Plaquettes �bold solid
lines� are nonlocally coupled by nearest �J1�, next-nearest �J2�, and
next-next-nearest �J3� interactions, represented by thin solid,
dashed, and dot-dashed lines, respectively. For clarity only some of
the J3 couplings are depicted. On each isolated plaquette, the cou-
plings along the square edges are J0 �bold solid lines� and across the
diagonals J2. At J1=J0 the J1-J2-J3 model is recovered. J0 couplings
are set to unity hereafter.
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The nature of the quantum phases in selected regions J1,
J2, and J3 has been considered recently by Mambrini et al.23

By employing ED and diagonalization in a subset of short-
range valence bond �SRVB� singlets �SRVB method� these
authors have found evidence for a VBC-ordered, gapped
plaquette phase in an extended region around the lines �J2
+J3� /J1=1 /2 and J3�J2. In this paper we will complement
and extend these findings by performing SE analysis. In par-
ticular we will aim at a quantitative determination of the
extension of the plaquette phase around the previously men-
tioned line by localizing the critical lines for a closure of the
triplet gap.

Our strategy will be to analyze perturbatively the evolu-
tion of the ground state of a generalized version of the
J1-J2-J3 model. For this version J0�J1. At J1,3=0 and J2
�0 �only on those squares formed by the J0 links� the gen-
eralized J1-J2-J3 model shown in Fig. 1 exhibits a product
state of disconnected bare four-spin “plaquettes.” This will
be the unperturbed ground state from which we start. The
local J0 couplings �bold lines� will be set to unity hereafter.
Therefore at J1=1 we recover the J1-J2-J3 model �in units of
J1� from the generalized model. The Hamiltonian of gener-
alized model is

H = H0 + V, H0 = �
l

h0,l, V = �
l

�V1,l + V2,l + V3,l� ,

�1�

where h0,l refers to the local plaquette at site l, given by

h0,l = �S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1 + J2�S1 · S3

+ S2 · S4��l =
1

2
�S1234

2 − S13
2 − S24

2 + J2�S13
2 + S24

2 − 3��l,

�2�

where S1. . .n=S1+ . . . +Sn. V1,l, V2,l, and V3,l in Eq. �1� repre-
sent the interplaquette coupling at site l via nearest �J1�,
next-nearest �J2�, and next-next-nearest �J3� interactions, re-
spectively,

V1,l = J1�S3,l · S2,l+x + S4,l · S1,l+x + S2,l · S1,l+y + S3,l · S4,l+y� ,

V2,l = J2�S4,l · S2,l+x + S3,l · S1,l+x + S2,l · S4,l+y + S3,l · S1,l+y

+ S3,l · S1,l+x+y + S4,l+y · S2,l+x� ,

V3,l = J3�
i=1

4

�Si,l · Si,l+x + Si,l · Si,l+y� . �3�

Table I shows the eigenstates of a local plaquette Hamil-
tonian, h0,l, in which each state is labeled by the ground-state
energy: e0, the total spin S1234, and the spin along each diag-
onal S13 and S24.

From this table it follows that for 0�J2�1 the ground
state is �St	, i.e., a spin singlet along the plaquette and triplets
along the diagonals. For 0�J2�

1
2 the first-excited state is

�Tt	, i.e., triplets along both the plaquette and the diagonals.
At J2=1 there is a crossover in the ground-state energy and
thereafter the ground state is �Ss	, i.e., singlets along the
plaquette and the diagonals. The other states are total triplets,

�Tts	 and �Tst	, consisting of a triplet on one of the diagonals
and a triplet on the other one. Finally, there is a quintet state,
�Qt	.

II. SERIES EXPANSION BY CONTINUOUS UNITARY
TRANSFORMATION

In this section we briefly describe the SE expansion in
terms of J1, J2, and J3. First, we rewrite the Hamiltonian �Eq.
�1�� as

H = H0�J2 = 0� + J2O2
0 + �

i=1

3 
Ji �
n=−N

N

Oi
n� , �4�

where H0 has been split into the first two terms. The first one,
H0�J2=0�, has a set of equally spaced energy levels �Table I�.
These are labeled with a total particle-number operator: Q
=�lql�J2=0�. Q=0 corresponds to zero-particle states: �0	
�l�St	l. Q=1 sector corresponds to one-particle states:
�1	l���Tt	l� � l�l��St	l, i.e., a local triplet at site l� created
from the vacuum. Q�2 sector of the spectrum is of multi-
particle nature.

The second term in Eq. �4� refers to local contributions in
H0 proportional to J2. The last three terms in the same equa-
tion �4� represent the interplaquette interactions, via J1, J2,
and J3, respectively. There, Oi

n operators nonlocally create
�n�0� and destroy �n�0� quanta within the ladder spectrum
of H0�J2=0�. The explicit tabulation of Oi

n in this model
shows that N�4.24

It has been shown25 that models of type �4� allow for SE
by means of Wegner’s continuous unitary transformation
�CUT� method.26 The basic idea is to map H→Heff, where

Heff = H0 + �
k,m,l=1

�

Ck,m,lJ1
kJ2

mJ3
l . �5�

The Ck,m,l operators in Eq. �5� involve products of the Oi
n

operators of Eq. �4�. However, as the main point and unlike
in H, the effective Hamiltonian Heff is constructed to have a
block-diagonal structure, where each block has a fixed num-
ber of particles Q of H0�J2=0�. This is achieved order by
order in the expansion. We refer to Ref. 25 for further details.
In Secs. III–VI we will apply this technique to calculate the
ground-state energy and the one-particle excitations.

TABLE I. Eigenstates of a local plaquette Hamiltonian, h0,l.
Each state is labeled by the energy: e0 and the quantum numbers
S1234, S13, and S24. Note that J0 coupling has been set to unity.

State q�e0+2 S1234 S13 S24

�St	
1
2J2 0 1 1

�Tt	
1
2J2+1 1 1 1

�Ss	 − 3
2J2+2 0 0 0

�Tts	 − 1
2J2+2 1 1 0

�Tst	 − 1
2J2+2 1 0 1

�Qt	
1
2J2+3 2 1 1
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III. DISPERSION OF ONE-TRIPLET EXCITATIONS

In this section we evaluate the dispersion of one-triplet
states for different values of the coupling constants, J1, J2,
and J3. To this end, it is necessary to diagonalize Heff in the
Q=1 sector of H0�J2=0�, i.e., the subspace spanned by �1	l
states. Q conservation implies that the sole action of Heff on
the local triplet states refers to translation in real space; i.e.,

Heff�1	0 = �
l

cl�1	l, �6�

where the cl’s are the hopping amplitudes of a local triplet
from origin 0 to site l. Due to the lattice translational invari-
ance Eq. �6� can be diagonalized by Fourier transformation

E1�k� = �
l

cl exp�ik · l� . �7�

From this, the dispersion ��k� follows as

��k� = E1�k� − E0, �8�

where the ground-state energy, E0, is obtained by applying
Q-conservation to the 0-particle sector; i.e., E0= �0�Heff�0	. It
is important to note that, even without an explicit discussion
of this quantity, Eq. �8� requires a full calculation of the
ground-state energy up to the same order as the hopping
matrix elements.

By symmetry considerations not all the cl’s are indepen-
dent, which leaves only a subset of them to be calculated.
Usually, in CUT applications, the cl’s at O�n� are obtained in
the thermodynamic limit by considering finite clusters which
are large enough to embed all the paths of length n �Ref. 27�
that connect origin 0 with site l. In our model, due to the
number of couplings considered and its dimensionality, this
method becomes computationally very demanding. Alterna-
tively, we have implemented a linked cluster approach, with
subgraph subtraction to obtain the cl’s. We refer to Ref. 28
for technical details of this method. We have evaluated ana-
lytic expressions for the triplet dispersion, ��k�, keeping all
three independent variables J1, J2, and J3, i.e., without any
parametrization, up to O�5�.29

Figure 2 shows the dispersion obtained at O�5�, as a func-
tion of wave vector k, along high-symmetry directions and
for different values of the couplings. We have chosen paths
in the couplings space that show the instabilities of the
plaquette phase associated with triplet softening; i.e., ��k�
=0. We have selected two families of curves, parametrized
according to J1, J2=bJ1, and J3=cJ1, around J1=1, the latter
being the point where the J1-J2-J3 model �in units of J1� is
recovered �see Fig. 1�.

As shown in Fig. 2, triplet softening occurs at a critical
wave vector of kc1= �0,0� for the specific value of
�J1 ,J2 ,J3���1,0.2,0.12�, i.e., for relatively small values of
J3, as compared to J2 �solid lines�. Additionally, for larger
values of J3 a critical wave vector at kc2= �� ,�� �dashed
lines� can be observed for the particular value of �J1 ,J2 ,J3�
��1.1,0.15,0.76� �dashed line�. We have found no other
values for critical wave vectors. A priori the critical wave
vector does not determine a particular type of magnetic LRO
beyond the critical couplings. This is because softening of

the plaquette triplets at kc does not uniquely fix a classical
spin structure. Tentatively restricting the latter to helical or-
der with pitch q, simplifications arise. For example, kc1
= �0,0� is consistent with Néel order and kc2= �� ,�� on the
lattice with spacing 2a�1 of the plaquettes is consistent
with q= �� /2,� /2� on the lattice with spacing a�1 of the
spins. This pitch differs with simple classical analysis above
the line �J2+2J3� /J1=1 /2.20–22 The classical analysis how-
ever can be questioned since its ground-state energy is higher
by roughly a factor of 2 as compared to the ground-state
energy Eg of the SE over all of the stability regions of the
plaquette phase, including the instability lines of the SE. This
leaves the large-J2,3 region �see Fig. 5� an interesting open
issue.12,13 Figure 2 clarifies the type of critical points that
have to be expected and is the first indication of the qualita-
tive relevance of J3 on the possible ground states of the
model. To obtain a quantitative picture, the stability region of
the plaquette phase in J1-J2-J3 space will be studied in detail
in Secs. IV–VI.

IV. STABILITY OF THE PLAQUETTE PHASE

In this section we discuss the quantum critical lines, re-
sulting from the closure of the plaquette triplet gap, which
resembles second-order quantum phase transitions. This will
give us a quantitative estimate of the stability region of the
plaquette phase. In particular we are interested in a possible
adiabatic connection of the isolated bare plaquette phase
�with only local J2�0� up to the value of J1=1. This analy-
sis is shown in Fig. 3 which depicts the borders of the sta-
bility region projected onto J1-J2 plane, taking J3 as param-
eter.

Figure 3 displays two families of critical lines, corre-
sponding to the closure of the triplet gap ��kc�=0 for kc1
= �0,0� and kc2= �� ,��, with dotted and solid lines, respec-
tively. First, it is obvious that independent of J2 and J3 the
plaquette phase extends from the origin, J1=J2=J3=0 �not
shown in Fig. 3� up to J1�0.55 below which there are no

FIG. 2. Triplet dispersion ��k� as a function of the wave vector
k= �kx ,ky� along the path k= �0,0�− �� ,0�− �� ,��− �0,0�. Two
families of curves in coupling-constant space with parametrization
J2=bJ1 and J3=cJ1 close to the actual J1-J2-J3 model at J1=1 have
been selected to show triplet softening; i.e., ��k�=0. The instability
at kc1= �0,0� occurs at small values of J3, with respect to J1 �solid
lines�. For larger values of J3 the instability is at kc2= �� ,��
�dashed lines�.
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signals of triplet softening. Second, we focus on the ��kc1�
=0 instability. In the case of J3=0, as can be observed from
the figure, the critical line almost reaches but does not cross
the line J1=1. In other words, the J1-J2 model does not show
a plaquette phase. This result is consistent with the previous
SE analysis on J1-J2 model in Ref. 15. Third, we consider the
simultaneous effect of J1, J2, and J3. As can be observed in
Fig. 3, increasing the values of J3 enlarges the region of
stability of the plaquette phase in the J1-J2 plane in terms of
the critical line kc1= �0,0� �solid lines�. Most important, fi-
nite J3 helps to stabilize the plaquette phase at J1=1. In fact,
already for J3�0.05 the critical line crosses J1=1. For J3
�0.4 the solid critical line merges with the lower right-hand
corner of Fig. 3 and the plaquette phase extends over all of
the J1-J2 planes shown. These results are consistent with Ref.
23.

Now we turn to the plaquette phase stability region, pro-
jected onto J1-J2 plane, limited by the critical lines ��kc2�
=0 �dotted lines in Fig. 3�. We find a similar tendency as for
kc2; i.e., the region of stability of the plaquette phase in the
J1-J2 plane is enlarged by increasing J3. In this case however
the impact of J3 is somewhat less significant as compared to
J2.

Technically, the critical lines of Fig. 3 have been obtained
using Dlog-Padé analysis rather than the plain series. This is
known to improve the accuracy of locating the critical points
significantly. For details on this technique we refer the reader
to the literature.30 In order to work with single variable Dlog-
Padés we have scanned the exchange coupling space by
means of straight lines, parametrized according to �J1 ,J2
=bJ1 ,J3=cJ1�. For fixed values of b and c this amounts to a
single variable, i.e., J1.

To assess the impact of the Dlog-Padé analysis, we show
its result for ��kc1�, for a particular Dlog-Padé approximant
and a case in which the triplet gap closes at J1=1 �Fig. 4�. A
similar analysis has been done for all the critical lines calcu-
lated, including several Dlog-Padé approximants in each

case. In this figure, the solid line refers to the reintegrated
Dlog-Padé �3,1�, and the dot-dashed and dashed lines show
the plain series at O�4� and O�5�, respectively. From there it
is clear that for J1	0.5 the agreement between the reinte-
grated Dlog-Padé and the SE at O�4� and O�5� is very good.
In fact, all plots are indistinguishable on the scale used. This
provides a qualitative measure of the convergence of the se-
ries. For J1
0.5 and closer to criticality �at J1=1 in this
case�, however, we rely on the Dlog-Padé technique in order
to describe the closure of the gap.

V. PLAQUETTE PHASE AT J1=1

Here we analyze the extent of the plaquette phase on the
J2-J3 plane at J1=1, i.e., for the actual J1-J2-J3 model, writ-
ten in units of J1. As it was mentioned in Sec. I, ED calcu-
lations for J1-J2-J3 model, using the complete Hilbert space
and a restricted space of short-range dimer singlets, provide
strong evidence for the existence of a plaquette phase around
the line J2+J3=1 /2 at J1=1, in particular for J3�J2.23 In
this section, we will extend this study by specifying the ex-
tension of this phase as obtained from SE. To this end, we
proceed as in Sec. IV; i.e., the critical lines are obtained by
analyzing the closure of the triplet gap, i.e., solutions of
��k�=0.

In Fig. 5 we show the corresponding results. The lower
and upper critical lines mark the triplet softening at kc1 and
kc2, respectively, and enclose the region of a finite triplet
gap. That is, this region refers to the plaquette phase, labeled

FIG. 3. Critical lines ���kc�=0� in J1-J2 plane and J3 as param-
eter. Triplet softening occurs at kc1= �0,0� and kc2= �� ,��, shown
with solid and dashed lines, respectively. In all cases results from
Dlog-Padé analysis are depicted. For 0�J3	0.4, the instability at
kc1 limits the plaquette phase, projected onto J1-J2 plane. But only
for J3
0.05 a plaquette phase appears in J1-J2-J3 model �critical
lines cross J1=1�. In particular, for J1=1, J2, and J3=0, i.e., in the
J1-J2 model, the plaquette phase is not present. For 0.7	J3	0.8,
the critical lines at kc2 limit the plaquette phase projected onto J1-J2

plane. FIG. 4. Comparison between the triplet gap at kc= �0,0� ob-
tained by means of plain series and a particular Dlog-Padé approx-
imant along selected straight-line paths in couplings space, for a
case in which the triplet gap closes at J1=1. Results from reinte-
grated Dlog-Padé �3,1�, plain series at O�4� and O�5� are shown
with solid, dot-dashed, and dashed lines, respectively. For J1	0.5
the agreement is very good in all cases. Closer to J1-J2-J3 model,
i.e., to J1=1, clear differences between the Dlog-Padé and the plain
series arise.
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as “P.” In this figure, Dlog-Padé approximants are depicted
by solid lines and the results obtained by employing the O�5�
plain series by dashed lines. We note that the critical lines
shown from Dlog-Padé approximants in Fig. 5 are consistent
with the pairs of �J2c ,J3c� at J1=1 shown in Fig. 3.

Although, as in Sec. IV, we base our results on the Dlog-
Padé analysis, the agreement between the plain series and the
Dlog-Padé approximants can be used to assess the conver-
gence of the series. From Fig. 5, it is clear that the best
agreement for the lower critical line is found in the interme-
diate region, i.e., where 0.1	J2,3	0.2.

For the special case of J2=0, i.e., for the pure J1-J3
model, it has been conjectured that the classical critical line
to Néel phase at J3 /J1=0.25 �J1=1 in our case� should be
shifted to larger values in the quantum model.22 For all Dlog-
Padés analyzed, our results confirm this conjecture, as, e.g.,
for the �3,1� Dlog-Padé approximant of the lower critical line
shown in Fig. 5.

In conclusion we find that the plaquette phase extends
considerably around the straight line of maximal frustration,
connecting J2=0 and J3=0.5 with J2=J3�0.25, which was
studied in Ref. 23. In particular, as it can be seen in Fig. 5,
the upper critical line is rather far from the line of maximal
frustration. Additionally, in the limiting case J3=0, we re-
main with the J1-J2 model. For the latter, and as shown in the

right lower corner of Fig. 5, and unlike the plain series, the
Dlog-Padé analysis suggests that the critical line does not
intersect the J2 axis. That is, we find no stability in the
plaquette phase. This is in agreement with the SE results of
Ref. 15. Yet, the proximity between the critical line and the
J2 axis calls for caution on this finding with respect to the
convergence of the SE in this parameter range.

VI. CONCLUSIONS

To summarize, using series expansion, based on flow
equations we have analyzed the zero-temperature properties
of the 2D spin-1/2 J1-J2-J3 AFM. Starting from the limit of
decoupled plaquettes of a generalized J1-J2-J3 model we
have evaluated three-parameter series up to O�5� in the in-
terplaquette exchange couplings J1, J2, and J3 for the
ground-state energy and for the triplet dispersion.

We find a rather large range of J1,2,3 couplings which
adiabatically connects to the state of isolated plaquettes and
hosts a plaquette phase which is stable against second-order
quantum phase transitions into magnetic states. Our findings
corroborate and enhance related predictions of Mambrini et
al.23 on the location of a stable plaquette phase at J1=1.

For the particular case of the J1-J2 model at J3=0, and
consistently with results obtained in Ref. 15, our calculation
predicts that the plaquette phase is not stable in the param-
eter range which we have investigated. However, higher-
order series expansions seem very desirable to render such
results more reliable. In particular, from our series we are
reluctant to draw any definite conclusions about the contro-
versial region J3=0 and 0.4	J2	0.6.

Finally, we emphasize that our analysis has been focused
on the stability of the plaquette phase with respect to second-
order transitions driven by one-particle �triplet� excitations.
Further instabilities, such as first-order transitions or level
crossings of excited states, other than elementary triplets,
could give rise to further reduction in the plaquette regime
and have not been considered here. Along this line, the two-
particle sector, which includes singlet excitations, may play a
role that can be analyzed using our SE technique. This de-
serves future investigation.
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